Auto Endpoints for CRUD Operations
Chanfana provides a set of auto endpoint classes that streamline the development of common CRUD (Create, Read, Update, Delete) operations for your APIs. These auto endpoints significantly reduce boilerplate code and provide a consistent structure for standard data management operations.
Introduction to Auto Endpoints
Chanfana offers the following auto endpoint classes, all extending the base OpenAPIRoute class:
CreateEndpoint: For creating new resources. HandlesPOSTrequests.ReadEndpoint: For retrieving a single resource. HandlesGETrequests for a specific resource identifier.UpdateEndpoint: For updating existing resources. HandlesPUTorPATCHrequests.DeleteEndpoint: For deleting resources. HandlesDELETErequests.ListEndpoint: For listing multiple resources, often with pagination and filtering. HandlesGETrequests for collections of resources.
These endpoints are designed to work with a Meta object, which you need to define for each endpoint. The Meta object describes your data model, including its schema, primary keys, and table name (if applicable, especially for database-backed endpoints).
Defining the Meta Object
The Meta object is crucial for auto endpoints. It provides Chanfana with the necessary information about your data model to generate schemas and perform operations.
The Meta object has the following structure:
type MetaInput = {
model: Model;
fields?: AnyZodObject; // Optional, defaults to model.schema
pathParameters?: Array<string>; // Optional, to explicitly define path parameters
};
type Model = {
tableName: string; // Optional, but recommended for database-backed endpoints
schema: AnyZodObject; // Zod schema defining the data model
primaryKeys: Array<string>; // Array of primary key field names
serializer?: (obj: object) => object; // Optional serializer function
serializerSchema?: AnyZodObject; // Optional schema for serialized output
};Key properties of Meta:
model: Describes the data model itself.tableName(optional): The name of the database table (if your data is stored in a database). Useful for D1 endpoints.schema(required): A Zod schema that defines the structure of your data model. This schema is used for schema generation and validation.primaryKeys(required): An array of strings representing the primary key fields of your data model. Used for identifying resources inReadEndpoint,UpdateEndpoint, andDeleteEndpoint.serializer(optional): A function to serialize your data before sending it in responses. Useful for data transformation or formatting. If not provided, a default serializer that returns the object as is is used.serializerSchema(optional): A Zod schema for the serialized output. If aserializeris provided, you should also provide aserializerSchemato document the serialized response structure correctly. If not provided, defaults tomodel.schema.
fields(optional): A Zod schema that represents all possible fields of your data model. If not provided, it defaults tomodel.schema. You can usefieldsto define a broader schema thanmodel.schemaif needed, for example, if your database table has more columns than you want to expose in your API.pathParameters(optional): An array of strings to explicitly define the path parameters for the endpoint. This is particularly useful in nested route scenarios where the URL parameters might not directly correspond to the model's primary keys in a one-to-one manner within each route segment. If not provided, Chanfana will infer path parameters from the primary keys defined in yourmodel.
Addressing Primary Key Validation in Nested Routes:
In applications with modular routes, especially when using nested routes, a bug was identified in how primary keys were validated. Previously, auto endpoints validated primary keys based only on the URL parameters defined in the current route segment. This approach failed in nested routes where the full path defines a composite primary key spanning across multiple route levels.
For example, consider the route structure: /users/:userId/posts/:postId. If posts model has a composite primary key ['userId', 'postId'], and the ReadEndpoint for /posts/:postId was defined without considering the parent /users/:userId route, validation would incorrectly compare the model's primaryKeys ( ['userId', 'postId']) against the URL parameters of just the current segment (['postId']), leading to a validation error like: "Model primaryKeys differ from urlParameters on: /{postId}: ["userId","postId"] !== ["postId"]".
To resolve this, Chanfana introduces the pathParameters property in the Meta object. By explicitly defining pathParameters, you can tell Chanfana exactly which URL parameters correspond to the primary keys of your model, considering the full merged path of nested routes.
Example of using pathParameters in Nested Routes:
Let's revisit the nested routes example from the bug report to demonstrate how to use pathParameters to fix the validation issue.
import { Hono } from 'hono';
import { fromHono, ReadEndpoint, ListEndpoint, contentJson } from 'chanfana';
import { z } from 'zod';
// Define User and UserPost Models and Metas
const UserSchema = z.object({
id: z.uuid(),
username: z.string(),
});
const userMeta = {
model: { schema: UserSchema, primaryKeys: ['id'] },
};
const UserPostSchema = z.object({
userId: z.uuid(),
id: z.uuid(),
title: z.string(),
content: z.string(),
});
export const userPostMeta = {
model: {
schema: UserPostSchema,
primaryKeys: ['userId', 'id'],
tableName: 'posts',
},
pathParameters: ['userId', 'id'], // Explicitly define pathParameters
};
// User Endpoints
class ListUsers extends ListEndpoint { _meta = userMeta; async list() { return { result: [] }; } }
class ReadUser extends ReadEndpoint { _meta = userMeta; async fetch() { return {}; } }
const usersApp = new Hono();
export const usersRoute = fromHono(usersApp)
.get('/', ListUsers)
.get('/:id', ReadUser)
.route('/:userId/posts', userPostsRoute); // Nested user posts route
// UserPost Endpoints
class ListUserPosts extends ListEndpoint { _meta = userPostMeta; async list() { return { result: [] }; } }
class ReadUserPost extends ReadEndpoint { _meta = userPostMeta; async fetch() { return {}; } }
const userPostsApp = new Hono();
export const userPostsRoute = fromHono(userPostsApp)
.get('/', ListUserPosts)
.get('/:id', ReadUserPost);
// Main App
const app = new Hono();
const apiRoute = fromHono(app)
.route('/users', usersRoute);
export default app;In this corrected example:
- We added
pathParameters: ['userId', 'id']to theuserPostMeta. This explicitly tellsReadUserPost(and other auto endpoints for user posts) that the path parameters for identifying a user post areuserIdandid, in that order, corresponding to the route structure/users/:userId/posts/:id. - Now, when Chanfana validates the
ReadUserPostendpoint for the route/users/:userId/posts/:id, it correctly compares the model'sprimaryKeys['userId', 'id']with the explicitly definedpathParameters['userId', 'id'], resolving the validation error.
By using pathParameters, you ensure correct primary key validation in nested route scenarios and gain more control over how URL parameters are mapped to your data model's primary keys. If you are not using nested routes or your URL parameters directly match your model's primary keys in each route segment, you can omit pathParameters, and Chanfana will default to inferring them from your model.primaryKeys.
CreateEndpoint: Streamlining Resource Creation
CreateEndpoint simplifies the creation of new resources. It handles POST requests and expects the data for the new resource in the request body.
Example: Creating a New Product
import { Hono } from 'hono';
import { fromHono, CreateEndpoint, contentJson } from 'chanfana';
import { z } from 'zod';
// Define the Product Model
const ProductModel = z.object({
id: z.uuid(),
name: z.string().min(3),
description: z.string().optional(),
price: z.number().positive(),
createdAt: z.iso.datetime(),
});
// Define the Meta object for Product
const productMeta = {
model: {
schema: ProductModel,
primaryKeys: ['id'],
tableName: 'products', // Optional table name (for D1 endpoints)
},
};
class CreateProduct extends CreateEndpoint {
_meta = productMeta; // Assign the Meta object
async create(data: z.infer<typeof ProductModel>) {
// In a real application, you would save 'data' to a database here
console.log("Creating product:", data);
return data; // Return the created object
}
}
const app = new Hono();
const openapi = fromHono(app);
openapi.post('/products', CreateProduct);
export default app;In this example:
- We define
ProductModelusing Zod to represent the structure of a product. - We create
productMetawith themodelproperty, including theschema,primaryKeys, andtableName. CreateProductextendsCreateEndpointand assignsproductMetato_meta.- We override the
createmethod to implement the logic for creating a product (in this example, just logging and returning the data). - The
POST /productsroute is registered withCreateProduct.
CreateEndpoint automatically generates the OpenAPI schema for the request body (based on productMeta.model.schema) and the successful response (200 OK, returning the created object). It also handles validation of the request body.
Lifecycle Hooks in CreateEndpoint
CreateEndpoint (and other auto endpoints) support lifecycle hooks for pre- and post-processing. You can override the before and after methods to add custom logic:
import { z } from 'zod';
import type { O } from 'chanfana';
// Define User Model
const UserSchema = z.object({
id: z.uuid(),
username: z.string(),
email: z.email(),
password: z.string(),
passwordHash: z.string().optional(),
createdAt: z.iso.datetime().optional(),
});
const userMeta = {
model: {
schema: UserSchema,
primaryKeys: ['id'],
tableName: 'users',
},
};
class CreateUser extends CreateEndpoint {
_meta = userMeta;
async before(data: O<typeof this._meta>): Promise<O<typeof this._meta>> {
// Pre-processing: hash password, set defaults, validate business rules
return {
...data,
passwordHash: await hashPassword(data.password),
createdAt: new Date().toISOString(),
};
}
async after(data: O<typeof this._meta>): Promise<O<typeof this._meta>> {
// Post-processing: send welcome email, log audit trail, etc.
await sendWelcomeEmail(data.email);
await auditLog.record('user_created', data.id);
return data;
}
async create(data: O<typeof this._meta>) {
// Save to database
return await db.users.insert(data);
}
}The before hook runs before the create method, allowing you to transform or validate the input data. The after hook runs after creation, useful for side effects like sending notifications or logging.
ReadEndpoint: Efficient Resource Retrieval
ReadEndpoint is used to retrieve a single resource based on its primary key(s). It handles GET requests with path parameters corresponding to the primary keys.
Example: Getting Product Details
import type { Filters } from 'chanfana';
import { Hono } from 'hono';
import { fromHono, ReadEndpoint, contentJson } from 'chanfana';
import { z } from 'zod';
// (ProductModel and productMeta are assumed to be defined as in the CreateEndpoint example)
class GetProduct extends ReadEndpoint {
_meta = productMeta;
async fetch(filters: Filters) {
const productId = filters.filters[0].value; // Accessing the productId from filters
// In a real application, you would fetch product from database based on productId
const product = { id: productId, name: `Product ${productId}`, price: 99.99 }; // Simulate product data
return product;
}
}
const app = new Hono();
const openapi = fromHono(app);
openapi.get('/products/:productId', GetProduct); // Route with path parameter :productId
export default app;In this example:
GetProductextendsReadEndpointand uses the sameproductMeta.- We override the
fetchmethod to implement the logic for retrieving a product based on theproductIdfilter. - The
GET /products/:productIdroute is registered withGetProduct.
ReadEndpoint automatically generates the OpenAPI schema for the path parameter productId and the successful response (200 OK, returning the product object). It also handles validation of the path parameter.
Lifecycle Hooks in ReadEndpoint
ReadEndpoint supports before and after lifecycle hooks for pre- and post-processing:
import type { Filters, O } from 'chanfana';
import { z } from 'zod';
// Define User Model
const UserSchema = z.object({
id: z.uuid(),
username: z.string(),
email: z.email(),
role: z.string(),
});
const userMeta = {
model: {
schema: UserSchema,
primaryKeys: ['id'],
tableName: 'users',
},
};
class GetUser extends ReadEndpoint {
_meta = userMeta;
async before(filters: Filters): Promise<Filters> {
// Pre-processing: validate access permissions, log request
console.log('Fetching user with filters:', filters);
await checkUserPermissions(filters);
return filters;
}
async after(data: O<typeof this._meta>): Promise<O<typeof this._meta>> {
// Post-processing: add computed fields, log access
await auditLog.record('user_accessed', data.id);
return {
...data,
lastAccessedAt: new Date().toISOString(),
};
}
async fetch(filters: Filters): Promise<O<typeof this._meta> | null> {
const userId = filters.filters[0].value;
return await db.users.findById(userId);
}
}The before hook runs before the fetch method, useful for access control or logging. The after hook runs after fetching, allowing you to transform or augment the retrieved data.
Using Serializers to Transform Output
The serializer and serializerSchema properties in your Meta object allow you to transform data before sending it in responses. This is particularly useful for removing sensitive fields or reformatting data:
import { Hono } from 'hono';
import { fromHono, ReadEndpoint, type Filters } from 'chanfana';
import { z } from 'zod';
// Internal model with sensitive fields
const UserInternalModel = z.object({
id: z.uuid(),
username: z.string(),
email: z.email(),
passwordHash: z.string(), // Sensitive field
apiKey: z.string(), // Sensitive field
role: z.string(),
});
// Public model for API responses
const UserPublicModel = z.object({
id: z.uuid(),
username: z.string(),
email: z.email(),
role: z.string(),
});
const secureMeta = {
model: {
schema: UserInternalModel,
primaryKeys: ['id'],
tableName: 'users',
// Serializer removes sensitive fields
serializer: (user: any) => {
const { passwordHash, apiKey, ...publicData } = user;
return publicData;
},
// Schema documents the public API response
serializerSchema: UserPublicModel,
},
};
class GetUser extends ReadEndpoint {
_meta = secureMeta;
async fetch(filters: Filters) {
const userId = filters.filters[0].value;
// Fetch user with all internal fields
const user = await db.users.findById(userId);
return user; // Serializer will automatically remove sensitive fields
}
}The serializer function is automatically called before sending the response, ensuring sensitive data never leaves your API. The serializerSchema ensures your OpenAPI documentation accurately reflects what clients will receive.
UpdateEndpoint: Simplifying Resource Updates
UpdateEndpoint is used to update existing resources. It handles PUT or PATCH requests. It typically expects the primary key(s) to identify the resource to update (either in the path or body) and the updated data in the request body.
Example: Modifying Product Information
import { Hono } from 'hono';
import { fromHono, UpdateEndpoint, contentJson, type UpdateFilters, type O } from 'chanfana';
import { z } from 'zod';
// (ProductModel and productMeta are assumed to be defined as in the CreateEndpoint example)
class UpdateProduct extends UpdateEndpoint {
_meta = productMeta;
async getObject(filters: UpdateFilters) {
const productId = filters.filters[0].value;
// In a real app, fetch the existing product from DB based on productId
const existingProduct = { id: productId, name: `Product ${productId}`, price: 99.99 }; // Simulate
return existingProduct;
}
async update(oldObj: O<typeof this._meta>, filters: UpdateFilters) {
const productId = filters.filters[0].value;
const updatedData = filters.updatedData;
const updatedProduct = { ...oldObj, ...updatedData, id: productId }; // Simulate update
console.log("Updating product:", updatedProduct);
return updatedProduct;
}
}
const app = new Hono();
const openapi = fromHono(app);
openapi.put('/products/:productId', UpdateProduct); // Or .patch() for PATCH requests
export default app;In this example:
UpdateProductextendsUpdateEndpointand usesproductMeta.- We override
getObjectto fetch the existing product based onproductId(simulated here). - We override
updateto apply theupdatedDatato theoldObj(existing product) and return the updated product (simulated update logic). - The
PUT /products/:productIdroute is registered withUpdateProduct.
UpdateEndpoint generates schemas for the path parameter, request body (based on productMeta.model.schema), and the successful response (200 OK, returning the updated object). It also handles validation.
Lifecycle Hooks in UpdateEndpoint
UpdateEndpoint supports before and after lifecycle hooks:
import type { UpdateFilters, O } from 'chanfana';
import { z } from 'zod';
// Define User Model
const UserSchema = z.object({
id: z.uuid(),
username: z.string(),
email: z.email(),
role: z.string(),
updatedAt: z.iso.datetime().optional(),
});
const userMeta = {
model: {
schema: UserSchema,
primaryKeys: ['id'],
tableName: 'users',
},
};
class UpdateUser extends UpdateEndpoint {
_meta = userMeta;
async before(oldObj: O<typeof this._meta>, filters: UpdateFilters): Promise<UpdateFilters> {
// Pre-processing: validate changes, set timestamps
filters.updatedData = {
...filters.updatedData,
updatedAt: new Date().toISOString(),
};
return filters;
}
async after(data: O<typeof this._meta>): Promise<O<typeof this._meta>> {
// Post-processing: invalidate cache, send notification
await cache.invalidate(`user:${data.id}`);
await notifyUserUpdated(data.id);
return data;
}
async getObject(filters: UpdateFilters): Promise<O<typeof this._meta> | null> {
const userId = filters.filters[0].value;
return await db.users.findById(userId);
}
async update(oldObj: O<typeof this._meta>, filters: UpdateFilters): Promise<O<typeof this._meta>> {
const userId = filters.filters[0].value;
const updatedData = filters.updatedData;
return await db.users.update(userId, { ...oldObj, ...updatedData });
}
}The before hook runs before the update method, allowing you to modify the update data. The after hook runs after the update completes, useful for cache invalidation or notifications.
DeleteEndpoint: Easy Resource Deletion
DeleteEndpoint is used to delete resources. It handles DELETE requests, typically identified by primary key(s) in the path or body.
Example: Removing a Product
import { Hono } from 'hono';
import { fromHono, DeleteEndpoint, type Filters, type O } from 'chanfana';
import { z } from 'zod';
// (ProductModel and productMeta are assumed to be defined as in the CreateEndpoint example)
class DeleteProduct extends DeleteEndpoint {
_meta = productMeta;
async getObject(filters: any) {
const productId = filters.filters[0].value;
// In a real app, check if product exists in DB based on productId
const existingProduct = { id: productId, name: `Product ${productId}`, price: 99.99 }; // Simulate
return existingProduct; // Return the object to be deleted (for logging/auditing)
}
async delete(oldObj: O<typeof this._meta>, filters: Filters) {
const productId = filters.filters[0].value;
console.log("Deleting product:", productId);
// In a real app, delete product from DB based on productId
return oldObj; // Return the deleted object
}
}
const app = new Hono();
const openapi = fromHono(app);
openapi.delete('/products/:productId', DeleteProduct);
export default app;In this example:
DeleteProductextendsDeleteEndpointand usesproductMeta.getObject(overridden) simulates checking if the product exists before deletion.delete(overridden) simulates deleting the product (just logging here).- The
DELETE /products/:productIdroute is registered withDeleteProduct.
DeleteEndpoint generates schemas for the path parameter and the successful response (200 OK, returning the deleted object). It also handles validation.
Lifecycle Hooks in DeleteEndpoint
DeleteEndpoint supports before and after lifecycle hooks:
import type { Filters, O } from 'chanfana';
import { z } from 'zod';
// Define User Model
const UserSchema = z.object({
id: z.uuid(),
username: z.string(),
email: z.email(),
role: z.string(),
});
const userMeta = {
model: {
schema: UserSchema,
primaryKeys: ['id'],
tableName: 'users',
},
};
class DeleteUser extends DeleteEndpoint {
_meta = userMeta;
async before(oldObj: O<typeof this._meta>, filters: Filters): Promise<Filters> {
// Pre-processing: validate deletion permissions, soft delete check
await checkDeletionPermissions(oldObj.id);
console.log('Preparing to delete user:', oldObj.id);
return filters;
}
async after(data: O<typeof this._meta>): Promise<O<typeof this._meta>> {
// Post-processing: cleanup related data, send notifications
await cleanupUserData(data.id);
await notifyUserDeleted(data.id);
await auditLog.record('user_deleted', data.id);
return data;
}
async getObject(filters: Filters): Promise<O<typeof this._meta> | null> {
const userId = filters.filters[0].value;
return await db.users.findById(userId);
}
async delete(oldObj: O<typeof this._meta>, filters: Filters): Promise<O<typeof this._meta> | null> {
const userId = filters.filters[0].value;
await db.users.delete(userId);
return oldObj;
}
}The before hook runs before the delete method, useful for validation or logging. The after hook runs after deletion, allowing you to perform cleanup tasks or send notifications.
ListEndpoint: Implementing Resource Listing and Pagination
ListEndpoint is used to list collections of resources, often with pagination, filtering, and sorting capabilities. It handles GET requests for collections.
Example: Listing Products with Filtering and Pagination
import { Hono } from 'hono';
import { fromHono, ListEndpoint, contentJson, type ListFilters } from 'chanfana';
import { z } from 'zod';
// (ProductModel and productMeta are assumed to be defined as in the CreateEndpoint example)
class ListProducts extends ListEndpoint {
_meta = productMeta;
// Exact match filtering on these fields
filterFields = ['category', 'minPrice', 'maxPrice'];
// Full-text search across these fields (uses LIKE operator)
searchFields = ['name', 'description'];
// Available fields for sorting
orderByFields = ['name', 'price', 'createdAt'];
// Default sort field if none specified
defaultOrderBy = 'name';
// Optional: customize the search query parameter name (defaults to 'search')
// searchFieldName = 'q';
async list(filters: ListFilters) {
const options = filters.options;
const filterConditions = filters.filters;
console.log("Listing products with options:", options, "and filters:", filterConditions);
// In a real app, you would query the database with pagination, filtering, and sorting
const products = [ // Simulate product list
{ id: 'product-1', name: 'Product A', price: 10 },
{ id: 'product-2', name: 'Product B', price: 20 },
// ... more products ...
];
return { result: products };
}
}
const app = new Hono();
const openapi = fromHono(app);
openapi.get('/products', ListProducts);
export default app;In this example:
ListProductsextendsListEndpointand usesproductMeta.filterFields: Defines fields available for exact-match filtering (e.g.,?category=electronics)searchFields: Enables full-text search across specified fields (e.g.,?search=laptop)orderByFields: Fields available for sorting (e.g.,?order_by=price&order_by_direction=desc)defaultOrderBy: Default sort field when none is specifiedlist(overridden) simulates fetching a list of products based on the providedfilters(including pagination and filter conditions).- The
GET /productsroute is registered withListProducts.
ListEndpoint automatically generates OpenAPI schemas for:
- Pagination parameters:
page(default: 1),per_page(default: 20, max: 100) - Filtering parameters: Based on
filterFieldsfor exact matching - Search parameter:
search(or custom name viasearchFieldName) for full-text search - Ordering parameters:
order_by,order_by_direction(based onorderByFields) - Response schema: 200 OK, returning a list of products
Lifecycle Hooks in ListEndpoint
ListEndpoint supports before and after lifecycle hooks:
import type { ListFilters, ListResult } from 'chanfana';
import { z } from 'zod';
// Define User Model
const UserSchema = z.object({
id: z.uuid(),
username: z.string(),
email: z.email(),
role: z.string(),
status: z.enum(['active', 'inactive']),
});
const userMeta = {
model: {
schema: UserSchema,
primaryKeys: ['id'],
tableName: 'users',
},
};
class ListUsers extends ListEndpoint {
_meta = userMeta;
filterFields = ['role', 'status'];
searchFields = ['username', 'email'];
orderByFields = ['createdAt', 'username'];
async before(filters: ListFilters): Promise<ListFilters> {
// Pre-processing: apply tenant filtering, validate access
console.log('Listing users with filters:', filters);
// Add tenant filter automatically
filters.filters.push({ field: 'tenantId', value: getCurrentTenantId() });
return filters;
}
async after(data: ListResult<O<typeof this._meta>>): Promise<ListResult<O<typeof this._meta>>> {
// Post-processing: add computed fields, log access
await auditLog.record('users_listed', { count: data.result.length });
return {
result: data.result.map(user => ({
...user,
isActive: user.status === 'active',
})),
};
}
async list(filters: ListFilters): Promise<ListResult<O<typeof this._meta>>> {
const users = await db.users.findMany(filters);
return { result: users };
}
}The before hook runs before the list method, useful for adding default filters or validating access. The after hook runs after fetching the list, allowing you to transform or augment the results.
Example API calls:
GET /products?page=2&per_page=10 # Pagination
GET /products?category=electronics # Filter by category
GET /products?search=laptop # Search in name and description
GET /products?order_by=price&order_by_direction=desc # Sort by price descending
GET /products?category=electronics&search=gaming&order_by=name # Combine filtersCustomizing Auto Endpoints
You can customize auto endpoints by:
- Overriding lifecycle methods: Methods like
create,fetch,update,delete,list,before, andaftercan be overridden to implement your specific business logic, data access, and pre/post-processing steps. - Configuring
ListEndpointproperties:filterFields- Fields available for exact-match filteringsearchFields- Fields available for full-text searchorderByFields- Fields available for sortingdefaultOrderBy- Default sort field when none specifiedsearchFieldName- Customize the search query parameter name (defaults to'search')
- Using
serializerandserializerSchemainMeta: Transform output data and hide sensitive fields before sending responses. - Using
pathParametersinMeta: Explicitly define path parameters, especially for nested routes with composite primary keys. - Extending auto endpoint classes: You can create your own custom base endpoint classes that extend
CreateEndpoint,ReadEndpoint, etc., to add reusable logic or modify default behavior.
When to Use Auto Endpoints
Auto endpoints are ideal for standard CRUD operations where you are working with data models that have primary keys and you need to perform common data management tasks. They are particularly useful when:
- You are building RESTful APIs that follow standard CRUD patterns.
- You want to reduce boilerplate code for common operations.
- You want to ensure consistency in your API structure and documentation for CRUD endpoints.
- You are working with database-backed APIs (especially with D1 endpoints, as we'll see in the next section).
However, if your API logic is highly custom or doesn't fit the CRUD pattern well, you might need to use the base OpenAPIRoute class and define your endpoints from scratch.
Next, we will explore Working with D1 Database Endpoints to see how Chanfana provides specialized endpoints for Cloudflare D1 databases.